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Novel ring B abeo-sterols as growth inhibitors of Mycobacterium
tuberculosis isolated from a Caribbean Sea sponge, Svenzea zeai
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Abstract—Assay-guided fractionation of a moderately strong anti-tubercular extract obtained from the Caribbean Sea sponge
Svenzea zeai afforded two novel 5(6! 7)abeo-sterols, named parguesterols A (1) and B (2), as its active components. Their struc-
tures were elucidated on the basis of extensive spectroscopic analysis.
� 2007 Elsevier Ltd. All rights reserved.
Sponges of the class Demospongiae are known to
produce a large array of interesting steroids, mainly
D5-3b-hydroxy steroids, 3-ketosterols and rearranged
sterols, steroidal alkaloids, polyhydroxysteroids, steroid
peroxides, steroidal glycosides, and those with modified
side chains.1,2 However, prior to this report, there has
been only one account of a steroid possessing a con-
tracted cyclopentane B-ring from a marine organism,
namely, a Japanese sponge Stelletta hiwasaensis.3,4

While searching for new natural products that inhibit
the growth of Mycobacterium tuberculosis from marine
invertebrates, we isolated two novel sterols named par-
guesterol A (1) and parguesterol B (2). An assay-guided
fractionation of an anti-tubercular extract obtained
from the common Caribbean sponge Svenzea zeai
(phylum: Porifera; class: Demospongiae; order: Halic-
hondrida; family: Dictyonellidae) collected in La Pargu-
era, Puerto Rico yielded 1 and 2 as its active
components.5 After extensive 2D NMR studies in com-
bination with IR, UV, and MS analyses, their structures
were revealed as novel 5(6! 7)abeo-sterols. To our
knowledge, compounds 1 and 2 constitute only the sec-
ond and third examples of 6-5-6-5 fused rings sterols of
marine origin to be described.6 The MIC values for anti-
tubercular activity of parguesterols A (1) and B (2) were
determined as 7.8 and 11.2 lg/mL.
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The crude methanol–chloroform extract obtained from
S. zeai inhibited 100% of the growth of M. tuberculosis
H37Rv (ATCC 27294) at a concentration of 128 lg/mL
using the Microplate Alamar Blue Assay (MABA).7

However, at lower concentrations (64 lg/mL) the inhi-
bitory activity of the crude extract was diminished to
84%. The hexane-soluble fraction (17.1 g) of the metha-
nol–chloroform sponge extract (47.1 g) was chromato-
graphed consecutively on a Bio-Beads SX-3 column
with toluene as eluent and on a Si gel column using
eluents of increasing polarity (hexane, EtOAc, and ace-
tone) to yield a mixture of compounds. Fractionation
was monitored using anti-tubercular activity against
M. tuberculosis H37Rv. The active fractions containing
sterols were further purified by Si gel column chro-
matography with mixtures of hexane and acetone to
yield compounds 1 (3.5 mg, 0.007% yield) and 2
(4.2 mg, 0.009% yield).8

Parguesterol A (1)9 was obtained as a colorless oil whose
HR-EI MS showed a molecular ion peak at m/z
412.3348 (D +0.7 mmu) corresponding to the molecular
formula C28H44O2. The IR spectrum (thin film) dis-
played strong bands at 3400, 1719, and 1677 cm�1

attributed to the hydroxy, a,b-unsaturated aldehyde,
and olefin, respectively. The UV spectrum showing kmax

(MeOH) 237 nm (e 17,000) confirmed the presence of a
conjugated enal in 1.10 The 1H, 13C NMR, and HSQC
spectral data suggested the presence of three secondary
methyls, two tertiary methyls, nine methylenes, six
methines, five quaternary carbons (of which two were
sp3 and three were sp2), one oxygenated methine, one
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exo-methylene, and one aldehyde (Table 1). The 1H–1H
COSY, TOCSY, HSQC, and DEPT-135 spectra of 1
afforded three partial structures, A [C1–C4], B [C8–
C17, C20–C23], and C [C25–C27]. The connectivities
across partial structures A–C and five quaternary car-
bons, two tertiary methyls, a,b-unsaturated aldehyde,
and exo-methylene were accomplished confidently with
the assistance of HMBC, TOCSY, and NOESY NMR
experiments as shown in Figure 1.
Table 1. 1H (500 MHz), 13C NMR (125 MHz), and NOESY spectral data f

No. 1; dH (intrgt, mult, J in Hz) 1; dC (mult)b NOESY 2

1a 1.90 (1H, m) 36.2 (CH2) H-1b, H-3, H-9 1
1b 1.27 (1H, m) H-1a, H3-19 1
2ab 1.97 (2H, m) 31.3 (CH2) 1
3 3.70 (1H, m) 70.9 (CH) H-1a, H-4a 4
4a 3.47 (1H, br d, 15.0) 33.9 (CH2) H-3, H-4b 2
4b 2.08 (1H, m) H-4a, H3-19 1
5 168.9 (C)
6 9.97 (1H, s) 189.6 (CH) 9
7 139.3 (C) 2
8 2.55 (1H, t, 9.0) 46.3 (CH) H3-18, H3-19 2
9 1.16 (1H, m) 60.1 (CH) H-1a, H-12a 1
10 46.1 (C)
11a 1.48 (1H, m) 20.7 (CH2) H-11b 1
11b 1.39 (1H, m) H-8, H3-18, H3-19 1
12a 2.06 (1H, m) 39.8 (CH2) H-9, H-17, H3-21 2
12b 1.12 (1H, m) H3-18, H3-21 1
13 45.3 (C)
14 1.33 (1H, m) 54.5 (CH) H-9, H-17 1
15a 1.74 (1H, m) 26.6 (CH2) H-15b 1
15b 1.54 (1H, m) H-8, H-15a, H3-18 1
16ab 1.85 (2H, m) 28.5 (CH2) 1
17 1.14 (1H, m) 55.2 (CH) H-14, H3-21 1
18 0.73 (3H, s) 12.5 (CH3) H-8, H-11b, H-20 0
19 0.94 (3H, s) 15.6 (CH3) H-1b, H-8, H-11b 0
20 1.43 (1H, m) 35.5 (CH) H3-18, H3-21 1
21 0.96 (3H, d, 6.2) 18.9 (CH3) H-17, H-12ab 0
22ab 1.59 (1H, m); 1.15 (1H, m) 34.7 (CH2) 1
23ab 2.08 (1H, m); 1.88 (1H, m) 31.1 (CH2) 2
24 156.8 (C)
25 2.21 (1H, m) 33.8 (CH) H3-26, H3-27 2
26 1.02 (3H, d, 6.5) 22.0 (CH3) H-25 1
27 1.01 (3H, d, 6.5) 21.9 (CH3) H-25 1
28ab 4.71 (1H, s); 4.65 (1H, s) 106.0 (CH2) 4

a Spectra were recorded in CDCl3 at 25�C. Chemical shift values are in part
b 13C NMR multiplicities were obtained from a DEPT-135 experiment.
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Figure 1. 1H–1H COSY, TOCSY, and HMBC correlations of
parguesterol A (1).
The relative stereochemistries at C3, C8–C10, C13, C14,
C17, and C20 in 1 were assigned on the basis of the
NOESY correlations (Fig. 2). Key NOE correlations
for 1 showed interactions between H-3/H-4a (d 3.47)
and H-4a/H-9. Also, H3-19 (d 0.94) showed NOE re-
sponses with both H-4b and H-8. The NOE correlations
of H3-18 with both H-8 and H-20, but not with H-14 or
H-17, confirmed the b-orientation of H3-18 and thus, H-
17 and H3-21 should be located on the a-face. The a-
configuration of the latter protons was suggested also
by the strong NOEs from H3-21 to H-12ab and H-17.
or parguesterol A (1) and parguesterol B (2)a

; dH (intrgt, mult, J in Hz) 2; dC (mult)b NOESY

.69 (1H, m) 26.8 (CH2) H1b, H-9

.37 (1H, m) H-1a, H3-19

.65 (2H, m) 28.0 (CH2)

.12 (1H, br s) 67.4 (CH) H-4a

.14 (1H, m) 44.3 (CH2) H-3, H-4b, H-7

.73 (1H, dt, 3.0, 15.0) H-4a
84.2 (C)

.70 (1H, d, 3.0) 204.6 (CH) H-8

.25 (1H, m) 63.9 (CH) H-4a, H-9, H-14

.12 (1H, m) 40.0 (CH) H-6, H-11b, H3-18, H3-19

.29 (1H, m) 50.5 (CH) H-1a, H-7, H-14
45.5 (C)

.48 (1H, m) 21.6 (CH2) H-11b

.43 (1H, m) H-11a, H3-18, H3-19

.05 (1H, m) 39.7 (CH2) H-12b, H-14, H-17

.12 (1H, m) H-12a, H3-18, H3-21
44.8 (C)

.18 (1H, m) 56.2 (CH) H-7, H-9, H-12a, H-15a

.44 (1H, m) 24.6 (CH2) H-14, H-15b

.09 (1H, m) H-15a

.86 (1H, m); 1.30 (1H, m) 28.3 (CH2)

.10 (1H, m) 55.6 (CH) H-12a, H3-21

.72 (3H, s) 12.5 (CH3) H-8, H-11b, H-20

.93 (3H, s) 18.4 (CH3) H-1b, H-8, H-11b

.41 (1H, m) 35.6 (CH) H3-18, H3-21

.94 (3H, d, 6.5) 18.7 (CH3) H-17, H-20

.55 (1H, m); 1.12 (1H, m) 34.7 (CH2)

.09 (1H, m); 1.88 (1H, m) 31.0 (CH2)
156.7 (C)

.21 (1H, m) 33.8 (CH) H3-26, H3-27

.02 (3H, d, 6.5) 22.0 (CH3) H-25

.02 (3H, d, 7.0) 21.8 (CH3) H-25

.71 (1H, s); 4.65 (1H, s) 106.0 (CH2)

s per million relative to TMS.



Figure 2. Relative stereochemistry of parguesterol A (1).
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Parguesterol B (2)11 was isolated as a UV inactive color-
less oil. Its molecular formula, C28H46O3, was estab-
lished by HR-EI MS (m/z 430.3443, [M]+), implying
six degrees of unsaturation. The presence of two hydro-
xy groups was suggested by a strong absorption band at
3434 cm�1 in the IR spectrum (thin film) and further
supported by the ion peaks at m/z 412 (M–H2O)+ and
394 (M–2H2O)+ in the EI MS spectrum. In addition,
the IR spectrum displayed strong bands at 2736 and
1715 cm�1 ascribable to an aldehyde carbonyl group.
The 13C NMR spectral data of 2 (Table 1) indicated
the presence of 28 carbon atoms, including five methyls,
nine sp3 methylenes, one sp2 methylene, eight sp3

methines (including one oxygenated), four quaternary
carbons (including one sp2 and one oxygenated), and
one aldehyde. In general, the spectroscopic data of 2
(IR, 1H, and 13C NMR) were similar to those of 1,
except for the absence of the 5,7-olefin signals, which
were replaced by signals of a carbon–carbon single bond
[d 84.2 (C, C5) and 63.9 (CH, C7)] in 2. This was further
confirmed by HMBC correlations observed from H3-19
(d 0.93, s) to C5 (d 84.2) and from H-6 (d 9.70, d,
J = 3.0 Hz) to both C7 (d 63.9) and C5. Moreover, care-
ful comparison of the NMR and UV data of 1 with
those of 2 revealed that the a,b-unsaturated aldehyde
constellation across C5–C7 on 1 was replaced by a b-hy-
droxy aldehyde moiety in 2. The relative stereochemistry
of parguesterol B (2) was established by NOESY corre-
lations in comparison with those of 1. The NOE corre-
lations observed between H-7 (d 2.25) and methines H-
4a (d 2.14), H-9 (d 1.29), and H-14 (d 1.18) confirmed
the a-orientation of H-7. Additional key NOE correla-
tions for 2 showed interactions between H-6/H-8 and
H-8/H3-19. Hence, H-6 and the C5 hydroxy group must
be positioned on the b-face.

Tuberculosis (TB) continues to be the single largest
infectious killer disease in the world.12 Certain sterols
of structure similar to compounds 1 and 2 have been
reported to show potent anti-tuberculosis activity suggest-
ing that this class of triterpenoids hold great promise as
anti-mycobacterial agents.13,14 Therefore, compounds 1
and 2 were assayed for anti-tuberculosis activity against
M. tuberculosis H37Rv. Studies aimed at understanding
their mode(s) of action have shown that the minimum
structural requirement for sterols to be involved in
mycobacterial cell wall disruption include a polar head
group and a flexible non-polar phytyl tail.15 Thus, par-
guesterol A (1) and parguesterol B (2) constitute impor-
tant lead structures for the development of novel
tuberculosis drugs due to their strong activity, specific-
ity, and low toxicity against Vero cells (IC50 values =
52 lg/mL).16 More importantly, the 5(6! 7)abeo-
steroidal nucleus present in compounds 1 and 2 could
represent a novel scaffold for the development of
new anti-tuberculosis agents.17 In order to test this
hypothesis, further work on the synthesis and biological
screening of additional 6-5-6-5 fused rings sterol ana-
logs from representative sterols possessing the usual
3b-hydroxy-D5-cholestane nucleus is in progress.18
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